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Abstract

Diffusion tensor images and higher-order diffusion images are the foundation for neuroscience researchers who

are trying to gain insight into the connectome, the wiring scheme of the brain. Although modern imaging devices

allow even more detailed anatomical measurements, these pure anatomical connections are not sufficient for

understanding how the brain processes external stimuli. Anatomical connections constraint the causal influences

between several areas of the brain, as they mediate causal influence between them. Therefore, neuroscientists

developed models to represent the causal coherence between several pre-defined areas of the brain, which has

been measured using fMRI, MEG, or EEG. The dynamic causal modeling (DCM) technique is one of these models

and has been improved to use anatomical connection as informed priors to build the effective connectivity model.

In this paper, we present a visualization method allowing neuroscientists to perceive both, the effective connec-

tivity and the underlying anatomical connectivity in an intuitive way at the same time. The metaphor of moving

information packages is used to show the relative intensity of information transfer inside the brain using a GPU

based animation technique. We provide an interactive way to selectively view one or multiple effective connec-

tions while conceiving their anatomical connectivity. Additional anatomical context is supplied to give further

orientation cues.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Display algorithms—
Computer Graphics [I.3.7]: Animation—

1. Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI)
has become a window to the anatomical structures of the hu-
man brain and allows in-vivo reconstruction of fiber tracts
that form neural networks. Although the size of single nerve
fibers is far below the resolution capabilities of today’s imag-
ing devices, neuroscientists use tracked fiber clusters inten-
sively to understand the human brain’s structure, in particu-
lar its connectome, i.e., the wiring scheme of the brain. On
the other hand-side, Electroencephalography (EEG), mag-
netoencephalography (MEG) and functional MRI (fMRI)
allow scientists to measure functional coherences between
the activation in different brain areas in response to external
stimuli.

A major goal in biology, medicine, and, in particular,
neuroscience is the understanding of structure-function re-
lationships. To combine both, the anatomical knowledge
and the experimental results and to model the influences

of structural connections in an experimental context, many
approaches have been developed. One of these models
is Dynamic Causal Modeling (DCM) [FHP03] which can
be seen as a generalization of structural equation mod-
elling [MGL94]. The basic idea is to find a reasonable model
that represents interacting cortical regions. DCM aims at
making estimations about the causal architecture of cou-
pled brain regions and, even more interesting, how this cou-
pling is influenced by experimentally induced stimuli. In
2009, Stephan et. al. [STK∗09] introduced an approach to in-
clude tractography-based anatomical knowledge into DCM
and has provided the first formal evidence that anatomical
knowledge can improve DCM.

As a result, effective connectivity can be calculated be-
tween the cortical regions used in the setup, denoting the
actual information transfer between these regions. It is a
measure for causal relation between two regions. For each
pair of regions A and B connected anatomically, two effec-
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tive connectivity values can be computed, one in each direc-
tion along the same anatomical path, i.e. a directed effective
connectivity describing the information transfer from A to
B and one from B to A. These models are usually repre-
sented visually as a graph, where each node represents a cer-
tain area of the brain and is connected to other nodes with
directed, weighted edges, denoting the effective connectiv-
ity. Two-dimensional graph layouts do not allow the inclu-
sion of anatomically guided geometric relationships and are,
therefore, not able to show the structure–function relation-
ship properly. Additionally, the visualization of two values
in opposing directions on the same anatomical connection is
a serious problem for common visualization methods.

In this paper, we present a method to circumvent the above
problems. We combine anatomical and effective connectiv-
ity to embed the DCM model into its underlying anatomical
context. The anatomical pathways, transporting the informa-
tion between each pair of connected regions, get extracted
and used to project the effective connectivity using an ani-
mation technique for relative visualization of up to two ef-
fective connectivity values at the same time.

2. Related Work

Visualization of medical data is a wide-spread field and
many approaches have been developed to visualize almost
all imaging and measurement modalities separately or in
conjunction with each other.

In the context of our work, methods regarding several
kinds of connectivity are of special interest. Fiber tractogra-
phy has been introduced to provide a global view on locally
acquired data [BPP∗00]. To interactively explore the white
matter pathways, it has proven advantageous to pre-calculate
a large number of fiber tracts in advance and selectively filter
them by using regularly shaped regions of interest [ASM∗04,
BBP∗05]. Another approach is to create large-scale struc-
tural brain networks describing anatomical connection be-
tween several cortical regions of the brain [HCG∗08]. These
networks can be visualized by graphs and even by embed-
ding them into the three-dimensional context of the brain,
where they can be explored interactively [GCTH10].

Functional connectivity is another challenge. The vast
amount of data requires statistical methods to find signifi-
cant relations, which can be understood best by providing an
underlying anatomical context and interactive tools to selec-
tively view the information provided [MWZ∗00,WMZ∗01].

For visualization of volumetric data, the marching
cubes algorithm [LC87] and direct volume rendering (e.g.,
[EHK∗06]) are common methods of choice. Surface-based
approaches, which are able to ray-trace an isosurface in real-
time [KWH09], are of special interest for our approach be-
cause we use surfaces to show effective connectivity on it
and for providing anatomical context.

Figure 1: Example effective connectivity graph. Shown are

the involved regions, fusiform gyrus (FG) left and right as

well as lingual gyrus (LG) left and right. The regions are

connected anatomically (red) and, as modelled in the DCM

model, by effective connections. The connection modulation

(gray dotted lines) has been modeled by task and stimulus

properties. Several stimuli have been applied as individual

events to the lingual gyrus in the left visual field (LVF), right

visual field (RVF) and both visual fields (BVF). For more

details, see [SMP∗07].

3. Motivation

To understand the need for a new kind of visualization, one
needs to understand the difference between effective connec-
tivity and, for example, anatomical connectivity.

As anatomical connections can be seen as an undirected
graph, fiber tracts or three-dimensionally embedded graphs
are the visualization methods of choice. In contrast, the
graph representing effective connectivity is a weighted graph
(cf. Figure 1), where effective connectivity is the weight on
each edge. Along one anatomical connection, two contrarily
directed effective connectivity values may need to be visual-
ized. This requirement rules out several standard techniques
to quantitatively visualise directed information as they are
not able to properly show two quantities in contrary direc-
tions. Besides nearly trivial methods like color-coding of
fiber tracts or visualization by arrows, this also accounts
for particle animation [KKKW05] , line integral convolu-
tion (LIC) [CL93] or GPU based advection [LJH03,TvW03]
methods. In any case, Holten and van Wijk [HvW09] ana-
lyzed several possibilities to show directed information and
found that standard arrow representation should be avoided
and color-/intensity-/transparency-gradient-based visualiza-
tion is not free of ambiguities. It also states the potential of
animation for representation of direction.

Our neuroscientist collaboration partners required an in-
tuitive and, at the same time, appealing visualisation with a
more illustrative and metaphoric character than a precise vi-
sualization of quantity values. The metaphor of moving “in-
formation packages” on their underlying anatomical connec-
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tion meets this requirements best and embodies the meaning
of effective connectivity perfectly.

Although we present a visualization for effective connec-
tivity, one should always keep in mind that visualization rep-
resents only a model of reality. The exact modalities of phys-
iological information transfer inside the brain are not known
by now.

4. Method

Now, as the terms of effective and anatomical connectivity
has been described, including some specialties and their cal-
culation, we will continue with how we extract the fiber tract
cluster, building the foundation for our anatomically based
visualization. Following next is the volumization of the pre-
viously selected fiber tract cluster and the post-processing
of the volume data, which is then used for animating effec-
tive connectivity on an isosurface in the volumized fiber tract
data.

In the following sections, the effective connectivity graph
is handled as a weighted directed graph: (V,A,e). Each node
r ∈ V is anatomically represented by a region of the brain
and each arc c ∈ A correlates with a cluster of fiber tracts,
corresponding to the anatomical connection. The weight-
ing function e(i, j) provides the directed effective connec-
tivity value for each connected pair of regions ri and r j.
Another convention we will use in the following sections
is to treat each fiber tract as an ordered sequence of points:
f = {x|x ∈ R

3} in the set of all fiber tracts f ∈ F . In a real-
world dataset, this ordering is defined by the set of line seg-
ments f segments = {(a,b)|a,b ∈ f}. This set also defines two
designated elements:

fx0 ∈ f with ¬∃w ∈ f : (w, fx0) ∈ f segments and (1)

fx| f |−1 ∈ f with ¬∃y ∈ f : ( fx| f |−1 ,y) ∈ f segments, (2)

denoting the first and the last vertex of the fiber tract if the
order in f is assumed to be the order of appearance of each
vertex along the tract ( f segments).

4.1. Fiber Tract Selection

As the graph in Figure 1 implies, the anatomical connection
is always defined between two distinct areas of the brain.
These regions need to be known beforehand and can be ex-
tracted in several ways. In our example, the fusiform gyrus

and lingual gyrus have been segmented manually. An alter-
native to manually segmenting the required regions is the use
of atlas-based methods (e.g., [RBM∗05]).

With the help of the segmented regions, the selection of
all fiber tracts, belonging to the anatomical connections in
A, can be done by checking whether a fiber f ∈ F connects
the regions ri and r j with ri,r j ∈ V and, therefore, by clas-
sifying them to belong to a cluster C(ri,r j). To actually per-
form this selection, Blaas et. al. [BBP∗05] presented a fast

(a) (b)

(c) (d)

Figure 2: The selected part of the forceps occipitalis (a) se-
lected by LG left and LG right volumized (b) and filtered

using one iteration of the Gaussian filter (c). Applying the

Gaussian filter once yields a smooth surface, maintaining

the anatomical structure. The parameterization (d) is used

to characterize the main direction of the fiber tract cluster at

each point in the volume.

selection method for regular masks, boxes in their case. As
our classification needs to be done with irregular masks and
needs to be computed only once, such optimization strate-
gies are not worth the additional computational effort. Each
fiber tract can be classified very fast by simply testing each
fiber tract’s vertices x ∈ f ∈ F against both regions ri and
r j while loading the pre-integrated fiber tract data set. Addi-
tionally, vertices get discarded if they are not inside one of
the regions or between them to cut away parts not needed to
represent the anatomical connection between both areas. As
this fiber selection is straight forward, besides some issues
regarding the sampling theorem, we omit the details here.

Figure 2(a) shows a part of the forceps occipitalis selected
by the left and right lingual gyrus, supplemented with the
corresponding masks.

4.2. Fiber Tract Volumetric Representation

Depending on the location of the selection regions r ∈ V in
the brain, the amount and density of the fibers may vary.
This again becomes problematic for surface based anima-
tion. The animation might not even be perceptible if the fiber
tract cluster is too thin or too sparse. To avoid this prob-
lem, we create a volume out of the cluster. The volume can
then be post-processed to close holes or for thickening the
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(a) Centerline (b) Longest fiber-tract

Figure 3: The fiber tracts between the right fusiform gyrus

and the right lingual gyrus. Left: the centerline is too short to

properly parameterize the volume along the main direction

of the bundle. Right: the longest line solves the problem but

it is not necessarily in the center of the bundle.

cluster’s volumetric representation. An alternative is the ap-
proach by Enders et. al. [ESM∗05], which calculates a wrap-
ping surface around the fiber tracts. However, it may create
surfaces not wrapping the whole cluster, especially if it con-
tains strongly diverging fiber tracts.

Voxelization of three-dimensional lines and line seg-
ments is covered in many publications. We are basically
using a three-dimensional variant of the Bresenham algo-
rithm [Bre65] for line rasterization with anti-aliasing similar
to the idea in Wu’s line algorithm [Wu91]. As both algo-
rithms are sufficiently well known, we do not go into details
here.

Volumizing all fiber tracts f ∈ C(ri,r j) for all (ri,r j) ∈ A

yields in several three dimensional discrete fields describing
the anatomical paths of information transfer for each con-
nected regions ri and r j:

v(ri,r j)(x,y,z) ∈ [0,1]. (3)

Figure 2(b) shows the resulting volume as an isosurface.
The surface is very rough and, therefore, does not look nat-
ural. Applying a single discrete Gaussian filter iteration to
the volumized fiber tracts v(ri,r j)(x,y,z) smoothes the sur-
face while keeping the anatomical structure of the fiber-tract
cluster. The isovalue used in both examples is 0.3, as both
datasets are in the interval of [0,1].

Until now, there is no information about the direction, nor
the tangential information of the underlying fiber tract clus-
ter available during rendering. A second volume containing
a parameterization of the fiber tract cluster itself is needed.
We first tried using the centerline described in [ESM∗05],
which is there used to calculate a wrapping surface around
a fiber tract cluster. Caused by quickly diverging tracts, or
short tracts that are distributed along the fiber tract cluster,
the centerline degenerates to a short line which is not go-
ing through the whole tract cluster. The fiber tracts between
the right fusiform gyrus and the right lingual gyrus are an
example for this, as Figure 3(a) shows.

The longest fiber tract in the cluster, called f param, is

selected for parameterization, which works properly, even
though the longest line might not be in the center of the clus-
ter, nor represents it the main direction of the cluster. In all
the datasets we have used so far, this was no problem and is,
therefore, negligible.

To finally parameterize the volumized fiber tract clus-
ter, an additional parameterize f param(x,y,z) function is used
which calculates the parameter for a given point in relation to
the parameterization fiber tract f param. The parameterization
field p is then similar to v(ri,r j)(x,y,z) defined voxel-wise:

p(ri,r j)(x,y,z) = parameterize f param(v(ri,r j)(x,y,z)). (4)

The function parameterize itself is defined the following:

parameterize f param(x,y,z) = | f paramx0
, ...,xnearest |

︸ ︷︷ ︸

length of f param if cut at xnearest

.

(5)
The fiber tract vertex xnearest ∈ f param is the nearest ver-
tex of the parameterization fiber tract to the voxel (x,y,z).
So, the length of the parameterization fiber tract up to the
voxel’s nearest vertex parameterizes the cluster. The param-
eterization field needs to be scaled down from the interval
[0, | f param|] to the interval [0,1] to allow it to be uploaded
to the graphics hardware as an texture as pscaled(ri,r j)

. Figure 2(d)

shows the parameterization of the masked part of the forceps
occipitalis using color coding.

As the volumized fiber tract field v(ri,r j)(x,y,z) was
smoothed earlier, the parameterization field p(ri,r j)(x,y,z)
needs be calculated only for those voxels with a value not
zero and can be done during the Gaussian filter iteration.
This ensures a continuous parameterization for all voxels in-
volved in the anatomical path.

4.3. Effective Connectivity Animation

After the fiber tracts have been selected and volumized, a
smooth surface can be rendered. Typically, the marching
cubes algorithm [LC87] is used for triangulation of vol-
ume data. Although our animation approach works on tri-
angulated surfaces too, we are using a GPU-based ray trac-
ing [EHK∗06] for isosurface extraction and rendering. With
this approach, we circumvent any possible triangulation-
related problems and achieve a topological correct surface,
which renders even the thinnest fiber tract branches cor-
rectly. As this kind of volume rendering is well known, we
omit the details here. Figure 2(b) shows the GPU ray traced
isosurface with gradient based per pixel lighting.

As the parameterization field was uploaded to the GPU
too, we apply effective connectivity animation on the GPU
for every fragment on the surface by classifying each surface
pixel to belong to either the highlighted pixels, highlight-
border pixels or to the non-highlighted part of the surface.
Those highlighted beams, representing the “information-
packages”, move from ri to r j and vice versa with different
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(a) With overlapping (b) No overlapping

Figure 4: The final rendering of the fiber tract cluster from

left to right lingual gyrus with both effective connectivity

beams. For a video showing the animation, take a look at

the supplemental material accompanying this paper. Left:

This image was made at a time-step where the beams of LG

left→LG right and LG left←LG right do overlap to show

how we combine both beams. Right: without overlapping at

another time-step.

size to represent the effective connectivity. Please take a look
in the supplemented material accompanying this paper to see
the animation.

To ease the following description up, we will describe
only one moving package in the direction ri to r j along the
corresponding anatomical connection in v(ri,r j)(x,y,z). In the
next paragraphs, we call those “packages” only “beams” as
they look similar to moving beams on the surface. Due to
the graphics hardware architecture, only one fragment can
be processed at a time. Neighboring pixels are not accessi-
ble for write or for read. This is why we need to calculate
the current midpoint of the “information-package” for each
fragment:

m= ((t+o)∗ v) mod (k+
k

3
)−

k

6
(6)

The Equation 6 is very simple and uses two parameters. The
current time t with an offset o in milliseconds and the ve-
locity v. It is the well known physical relationship between
distance, time and velocity. The offset parameter is used to
avoid that the beam ri → r j starts at the same moment as
the beam ri← r j starts. This creates a better impression as it
does not look as artificial as if they would have been started
at the same time, meeting both exactly in the middle of the
cluster. The modulo operation ensures that there is a peri-
odic beam-movement from ri to r j along the current voxel’s
gradient in parameterization space in k units along the fiber
tract cluster. In our implementation we are using k = 100,
which creates a smooth movement. To ensure that the beam
does not abruptly end when the middle of the beam reaches
the end of the cluster and to ensure that the beam does not
pop up on the other side with the beam’s middle at the be-
ginning of the cluster, the interval is stretched. The value of
m then also covers the invisible part of the parameter space,
large enough to contain half of a beam’s maximum size, in

this case k
6 on each end of the parameter space. For more

details on the size of the beams, see section 4.3.1. The value
of m then represents the current position of the beam as a
line perpendicular to the main direction (the current gradi-
ent) on the surface. This line moves, depending on time and
speed, along the surface and is then used for classifying the
current fragments parameter in p(ri,r j)(x,y,z) (recall that the
parameterization field in Equation 7 is scaled to the interval
[0,1] to be uploaded as pscaled

(ri,r j)
(x,y,z) in a texture), whether

it belongs to the current beam, or “information package”:

b(ri,r j)(x,y,z) = |m− k ∗ s(ri,r j)p
scaled
(ri,r j)

(x,y,z)|−
l(ri,r j)

2
. (7)

Equation 7 describes an environment of size l(ri,r j) (the
length of the beam from ri to r j) around the current beam-
center m and describes a predicate for each fragment at the
current coordinate whether it is inside the beam (b<−ε), on
the border of the beam (b ∈ [−ε,0]) or outside of it (b > ε),
where ε denotes the border width. Ignoring the additional
parameter s, this simply tests whether the actual fragment
along the main direction of the fiber tract cluster is near
the current position m. The parameter s is used to ensure
equal speeds and the correct size-relation between the beams
for all beams on all fiber tract clusters and is the relation
between the fiber used for parameterization of the cluster
(ri,r j) and one of the parameterization fibers of all the clus-
ters in A:

s(ri,r j) =
| f

param

(ri,r j)
|

| f
param
re f |

,(ri,r j) ∈ A, ref ∈ A. (8)

The final pixel color can finally be determined using an
arbitrary color map. In our implementation, we use the fol-
lowing mapping:

c f ragment =







c(ri,r j) if b(ri,r j) <−ε

c(r j ,ri) if b(r j ,ri) <−ε

c(ri,r j) if b(ri,r j) <−ε∧

b(r j ,ri) <−ε∧

l(ri,r j) ≤ l(r j ,ri)
c(r j ,ri) if b(ri,r j) <−ε∧

b(r j ,ri) <−ε∧

l(ri,r j) > l(r j ,ri)
white if b(r j ,ri) ∈ [−ε,0]

csur f ace else

(9)

The surface itself has a user defined color csur f ace, which
is set if the fragment does not belong to either one of the
beams and is shaded by a previously calculated per-pixel
Phong shading. Equation 9 also covers the case where the
beams overlap. If this is the case, the color of the smaller
beam is used. Blending both colors would irritate the user
too much. The white border around each beam ensures that
the beam is visible even if the contrast between the beam’s
color c(ri,r j) or c(r j ,ri) and the surface color is very low. Fig-
ure 4 shows two time-steps of the animation, one with over-
lapping beams.
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4.3.1. Determining the length of the beams

The effective connectivity represented by the specific beam
is used to define its length. To have the length and, espe-
cially, their relation between each other consistent, we map
the interval [0,1], representing the smallest and largest beam
to the interval of the involved effective connectivities (the
connectivity graph’s weighting function e):

[min{e(i, j)|(ri,r j) ∈ A},max{e(i, j)|(ri,r j) ∈ A}] (10)

The mapping function has to map between [0,1] and the in-
terval of the smallest to the largest connectivity value. This
mapping can be adapted to the possible cases. In our ex-
amples, the effective connectivities do not spread wide in R

and, therefore we use a linear mapping. If the effective con-
nectivities vary very strongly, a logarithmic scale can help
to avoid many very small beams of not distinguishable size
and very few large beams. It is worth mentioning, that the
beam length interval [0,1] itself needs to be mapped to the
actual beam sizes. This mapping is strongly dependent to the
parameter k of the above equations 6 and 7. A good choice is
to set the beam sizes to [ k

100 ,
k
3 ] which creates beams not too

small and avoids extremely large beams covering the whole
surface.

4.4. Labeling

Due to the scaling and the movement of the beams on the
surface, it is difficult to read the actual effective connec-
tivity value. Only relationships can be seen. Therefore, our
approach is supplemented with some labeling features, al-
lowing the user the see the real effective connectivity value
and the names of the involved regions. To avoid, that the
labels overlap the actual surface and animation, we have
implemented a boundary based labeling, similar to the one
in [BKSW04]. We arrange labels with the name of the re-
gions on the boundary of the bounding box enclosing the
whole scene.

Figure 5 and 6 shows the example fiber tract cluster with
the corresponding labels. The video accompanying the paper
shows the dynamics of label placement.

5. Results

In this section, we demonstrate our method for two different
types of datasets: a real data set (cf. Figure 5 and 6) obtained
by DCMwith tractography-based priors and an artificial data
set (cf. Figure 7). We use artificial data to show the method in
more complex environments. The data taken from [STK∗09]
and [SMP∗07] examined only the connection of a region in
one hemisphere and the connectivity to their relatively close
counterpart in the other hemisphere (see Figure 1).

Figure 5: The final rendering of the T1 context and the ef-

fective connectivity graph from Figure 1. The involved re-

gions are labeled and the fiber tract cluster are colored dif-

ferently. To properly understand the image, the animation is

required. The animation provides the direction and, there-

fore, the source and target of an “information package”.

5.1. Data

5.1.1. DCM Data

The diffusion data used for fiber tracking is a DTI measure-
ment with 60 directions acquired with a three Tesla scanner
at the Max Planck Institute for Human Cognitive and Brain
Sciences. The DTI image is given as second-order tensor
data, 93× 116× 93 voxels with a resolution of 1.72 mm.
The tracts we use were computed using the method of We-
instein et al. [WKL99]. The complete set of tracts consists
of 74,313 tracts, represented by 5,472,306 vertices. The FG
and LG, left and right, were segmented in an MRI T1 im-
age measured using the same three Tesla scanner as used for
the DTI data. The image, warped into standard space, has a
resolution of 1mm for 160×200×160 voxels.

The subsequent selection of the fiber tracts connecting the
regions yielded only three of the links shown in Figure 1.
The link between FG left and FG right is missing. This re-
sults from the low probability of this connection (see Fig-
ure 1) together with the parameter setting of our determinis-
tic tracking. Neuroscientists, who perform studies about ef-
fective connectivity, however, are able to fit their probabilis-
tic tracking used to estimate the probabilities to a determin-
istic fiber tract dataset. Thus, the missing link is not a result
of our method, which is still useful without the missing link.
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(a) focusing LG left - LG right

(b) focusing LG left - FG right

Figure 6: The user can selectively explore the effective

connectivity graph, by highlighting the needed parts of the

graph. Transparency also helps to explore occluded parts of

other fiber tracts or to unveil interpenetrated tracts.

Fiber tract cluster FPS
Whole connectivity graph (Figure 5) 12
Whole connectivity graph, no context (Figure 6) 22
Artificial data with context (Figure 7(a)) 18
Artificial data with context (Figure 7(b)) 14

Table 1: Performance of the rendering in frames per second

(FPS).

5.1.2. Artificial Data

For the artificial example we took the same tract and T1
anatomy data as above but selected arbitrary regions. The
connectivity for the tract connection between these regions
was chosen randomly. This approach allowed us to pro-
duce complex, yet expressive connections that help to illus-
trate our method. Figure 7 shows two examples of artificial
data. Even though, these examples are not necessarily real-
istic, they prove that our method is not only applicable to
some special physical connections and effective connectiv-
ity graphs.

(a) (b)

Figure 7: Artificial test data for illustration: Figure (a)

shows the LG left – LG right fiber tract and the tract re-

sulting from using the LG right – FG right regions without

cropping the fibers. Figure (b) shows the tracts from (a) and

a part of the corticospinal tract and the forceps minor in

front of the brain.

5.2. Performance

The computational effort of the method can be divided into
two separate parts: preprocessing (fiber selection and volu-
mization) and rendering. The preprocessing step runs in the
order of seconds for all the data sets presented in this paper,
and will not be much larger for any data of reasonable size.
Thus, the effort is in the same range as loading the data and
is consequently negligible.

The rendering step is entirely performed on the graph-
ics board. This leads to very efficient computation, yielding
interactive frame rates. Table 1 lists some frame rate mea-
surements and the corresponding figure. For measuring these
frame rates, we have used a computer with two AMD Quad-
Core Opteron processors, 32 GB of RAM and an NVidia
GeForce 8800 GTX graphics board. As shown in Table 1,
we provide a visualization with high frame rates, so the neu-
roscientists can interactively explore their data.

5.3. Limitations

Although our method is parameter-free, it strongly relies on
segmented data for each of the regions involved into the ef-
fective connectivity graph. These segmented regions signif-
icantly influence the results of the fiber tract selection pro-
cess. These selection masks can either be segmented manu-
ally or by using an atlas.

6. Conclusion and Further Work

We presented an interactive, animated visualization for il-
lustrating effective connectivity in the human brain. It pro-
vides an intuitive and understandable visualization of the in-
volved anatomical structures and the corresponding effec-
tive connectivities, by using the metaphor of “information
packages”. We provided a parameter-free animation based
technique to visualize the directed quantity of effective con-
nectivity in a relative fashion. This helps neuroscientists to
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see and understand the information transfer between the in-
volved regions in the context of their underlying anatomi-
cal context. In complex DCM graphs and networks, the an-
imation can get confusing as many anatomical paths show
information-transfer and, therefore, create visual clutter. We
avoid visual clutter by allowing the user to selectively view
parts of the graph and fading out animation on others thus
retaining the other anatomical structures. The incorporation
of focus and context principles and interactive selection of
parts of the data makes it even more useful for daily use and
exploration of data.

An interesting avenue of future research can be the direct
incorporation of probabilistic tractography data as used for
the studies yielding the effective connectivity values. This
can serve as basis for a connection representation instead of
the volumized deterministic tracking lines. This would also
solve the problem of anatomical connections, not found by
the current preprocessing step. We will furthermore evaluate
different kinds of animation with our neuroscientist users to
possibly find other, even better representations of effective
connectivity in its anatomical context.
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